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1. Introduction. Suppose we have a set of m indivisible items, and wish to distribute them
among n agents. Agents have valuations for each set of items that are not necessarily identical.
How hard is it to divide the items between the agents to make sure everyone receives a fair share?

Fair division problems have been vastly studied in the past 60 years, (see, e.g. [3, 4, 8, 9, 10,
14, 19]). This line of research was initiated by the work of Steinhaus [19] in which the author
introduced the cake cutting problem as follows: given a heterogeneous cake and a set of n agents
with different valuation functions over the cake, the goal is to find a fair allocation of the cake to
the agents.

Figure 1: A notable recent
real-world example of fair
division is the delimita-
tion of Caspian sea among
littoral countries (source:
medium.com).

In order to study this problem, several notions of fairness have
been proposed, the most famous of which are proportionality and
envy-freeness. A division is called proportional, if the total value
of the allocated pieces to each agent is at least a 1/n fraction
of her total value for the entire cake. In an envy-free division,
no agent wishes to exchange her share with another agent, i.e.,
every agent’s valuation for her share is at least as much as her
valuation for the other agents’ shares. Notice that cake cutting
models a divisible setting where the main object (cake) can be
cut in an arbitrary way (see Figure 1). In contrast, our focus is
on a setting where n indivisible items are to be divided among n
agents.

From a theoretical standpoint, proportionality and envy-
freeness are too strong to be guaranteed for indivisible goods.
Therefore, Budish [9] proposed a relaxation of proportionality for
indivisible goods, namely the maximin share, which has attracted
a lot of attention in recent years [14, 3, 8, 7, 6, 5, 12, 1, 2]. Sup-
pose that we have a set N of n agents and a set M of m items,
and we ask an agent ai ∈N to partition the items into n bundles
and collect the bundle with the smallest value. To maximize her
profits, agent ai tries to divide M in a way that maximizes the
value of the bundle with the lowest value to her. Based on this,
the maximin share of an agent ai, denoted by MMSi, is the value
of the least valuable bundle in agent ai’s allocation; that is, the
maximum profit ai can obtain in this procedure. More formally, let Vi : 2M→R+ be the valuation
function of agent ai. Let Πn be the set of all partitions of the items in M into n non-empty sets.
We define MMSi as follows:

MMSi = max
P∗=〈P∗1 ,P∗2 ,...,P∗n〉∈Πn

min
1≤j≤n

Vi(P
∗
j ).

Clearly, MMSi is the most that can be guaranteed to an agent, since if all valuations are the
same, at least one agent obtains a valuation of at most MMSi from her allocated set. The question
addressed by Kurokawa et. al [14] was whether there exists an allocation which guarantees a utility
of at least MMSi for every agent ai? For notational convenience, we call such an allocation MMS.

While the experiments support the existence of an MMS allocation in general [8], this conjecture
was refuted by the pioneering work of [14], which provided a surprising counter-example that
admits no MMS allocation. They also show that a 2/3-MMS allocation always exists, i.e. there
exists an algorithm that allocates the items to the agents in such a way that every agent ai receives
a share that is worth at least 2/3MMSi to her. One drawback of their algorithm is runtime as it
does not run in polynomial time unless the number of agents is constant. Amanatidis, Markakis,
Nikzad, and Saberi [3] address this issue by presenting a polynomial time algorithm for finding a
(2/3− ε)-MMS allocation for any ε > 0. Nonetheless, their algorithm is inspired by the techniques
of [14].

https://medium.com/@FarshadKashani/will-iran-russia-find-legal-solution-to-caspian-dilemma-2a9b92c38437
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1.1. Our Results and Techniques. As mentioned before, the pioneering work of Kurokawa
et al. [14] gives the first proof to the existence of a 2/3-MMS allocation. Whether or not a better
bound could be achieved via a more sophisticated algorithm was their open question which we
answer in this work.

Theorem 1 (restated)Any fair allocation problem admits a 3/4-MMS allocation. Moreover, a
(3/4− ε)-MMS allocation can be found in time poly(n,m) for any ε > 0.

It is worth to mention that most of the previous methods provided for proving the existence of
a 2/3-MMS allocation (including [14]) were tight. This shows that the prior techniques and known
structural properties of maximin share were not powerful enough to beat the 2/3 barrier. In this
paper, we provide a better understanding of this notion by demonstrating several new properties
of maximin share. For example, we introduce a generalized form of reducibility and develop double
counting techniques that are closely related to the concept of maximin-share.

For a better understanding of our algorithm, we start with the case where the valuations of
the agents for all items are small enough. More precisely, let 0<α< 1 be a constant number and
assume for every agent ai and every item bj, the value of agent ai for item bj is upper bounded
by αMMSi. In this case, we propose the following simple procedure to allocate the items to the
agents.

• Arrange the items in an arbitrary order.
• Start with an empty bag and add the items to the bag one by one with respect to their order.

— Every time the valuation of an agent ai for the set of items in the bag reaches (1−α)MMSi,
give all items of the bag to that agent and continue with an empty bag. In case many
agents are qualified to receive the items, we choose one of them arbitrarily. From this
point on, we exclude the agent who received the items from the process.

We call this procedure the bag-filling algorithm. It is not hard to show that the bag-filling algo-
rithm guarantees a (1− α)-MMS allocation to all of the agents. The crux of the argument is to
show that every agent receives at least one bag of items. To this end, one could argue that every
time a set of items is allocated to an agent ai, no other agent aj loses a value more than MMSj.
This together with the fact that Vi(M)≥ nMMSi shows that at the end of the algorithm, every
agent receives a fair share of the items ((1−α)-MMS) .

This observation sheds light on the fact that low-value items can be distributed in a more efficient
way. Therefore, the main hurdle is to allocate the items with higher values to the agents. To
overcome this difficulty, we introduce a clustering method. Roughly speaking, we divide the agents
into three clusters according to their valuation functions. We prove desirable properties for the
agents of each cluster. Finally, via a procedure that is similar in spirit to the bag-filling algorithm
but more complicated, we allocate the items to the agents.

Our algorithm is based on three principles: reducibility, matching allocation, and envy-cycle-
freeness. We give a brief description of each principle in the following.

Reducibility: The reducibility principle is very simple but plays an important role. Assume
that the goal is to find an α-MMS allocation. In Section 2.1 we show that under certain conditions
(described in Lemmas 1 ,2, and 3) we can instantly satisfy a subset of agents via few number of
items 1 such that in the remaining instance, maximin-share value of every agent with respect to
the remaining items is at least as her maximin-share value in the original instance. By definition,
finding any α-MMS allocation for the remaining instance yields an α-MMS allocation for the original
instance.

1 An agent ai is satisfied with a set of items, if she values it at least α-MMSi.
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We call such a process reduction and name the instances that can not be reduced via Lemmas
1 , 2, and 3 as irreducible instances. The idea is that in order to prove the existence of an α-
MMS allocation, it only suffices to show this for the irreducible instances. This makes the problem
substantially simpler since irreducible instances have many desirable properties. For example, in
such instances, the value of every agent ai for each item is less than αMMSi (see Lemma 1). By
setting α= 1/2, this lemma along with the analysis of the bag-filling algorithm proves the existence
of a 1/2-MMS allocation. A special form of reduction, where we satisfy one agent with a single
item is used in the previous studies [3, 14].

Matching allocation: During the clustering phase, we use a well-structured type of matching
to allocate the items to the agents. In order to cluster a group of agents, we find a subset T of
agents and a subset S of items (|S|= |T |), together with a matching M from S to T . We choose T ,
S, and M in a way that for some fixed ratio β, (i) the item allocated to each agent ai has a value
of at least βMMSi to her, (ii) each agent aj who does not receive any item has a value smaller than
βMMSj for each of the allocated items. Such an allocation requires careful application of several
properties of maximal matchings in bipartite graphs. A matching with similar structural properties
is previously used by Kurokawa et al. [14] to allocate the bundles to the agents. In this paper, we
reveal more details and precisely characterize the structure of such matchings.

Envy-cycle-freeness: Envy-freeness is itself a well-known notion in fair allocation problems.
However, this notion is perhaps more applicable to the allocation of divisible goods. In our algo-
rithm, we use a much weaker notion of envy-freeness, namely envy-cycle-freeness. An envy-cycle-free
allocation contains no cyclic permutation of a subset of agents such that each agent envies the next
agent in the cycle, i.e., the envy-graph2 of the agents is a DAG. An analogous concept is previously
used by Lipton et al [16].

Envy-cycle-freeness plays a key role in the second phase of the algorithm. As aforementioned,
our method in the second phase is closely related to the bag-filling procedure described above. The
difference is that when there are multiple agents eligible to receive the items in bag, we prioritize
the agents based on the notion of envy-cycle-freeness, and select the one with the highest priority.

1.2. Related Work. Based on a concept defined by Moulin [17], Budish [9] introduced
maximin-share as a notion of fairness. Following his study, Bouveret and Lemaitre [8] show that
for the restricted cases, when the valuations of the items for each agent are either 0 or 1, or when
m≤ n+ 3, an MMS allocation is guaranteed to exist. They also provide series of experiments with
different distributions over the item values. Interestingly, MMS allocation exists in all the instances
with no exception. This, along with other extensive experiments by different groups of researchers
[14] inspires the idea that MMS allocation always exists. However, it turns out that there are
instances that guaranteeing MMS is not possible [14].

With respect to the impossibility result of Kurokawa, Procaccia, and Wang [14], one approach
to circumvent this obstacle is to consider the problem through the lens of approximation. Indeed,
the non-existential proof of [14] only indicates that exact MMS allocations may not exist; however,
it still might be the case that we can guarantee every agent a value which is reasonably close to
MMSi for every agent ai. For a special setting that there are multiple copies of each item, Budish
[9] show that one can guarantee MMSn+1

i (M) to every agent. However, his method provides no
non-trivial guarantee for our setting that there is one copy of each item. In another approach,
along with their non-existence result, Kurokawa, Procaccia, and Wang [14] show that allocations
exist that guarantee each agent ai a value of at least 2/3-MMSi. Their method is later turned into

2 Envy-graph is a directed graph with n vertices, where there is a directed edge from vertex i to vertex j, if ai envies
aj .
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a polynomial time algorithm with the approximation factor of 2/3− ε by Amanitidis et al. [3].
Finally, using a simple greedy algorithm, Barman and Krishma Murthy [7] presented a polynomial
time 2/3-MMS allocation algorithm, which was the best known guarantee prior to our work.

Maximin-share is also studied for the case of the agents with more general valuations, and
constant factor approximations are provided for submodular valuations [7, 13], XOS valuations
[13], and hereditary set systems [15]. In addition to this, this notion has been studied for the case
of the agents with different entitlements [12], and the setting with externalities [18].

2. Basic Definitions and Observations. Throughout this paper we assume the set of agents
is denoted by N and the set of items is referred to by M. Let |N |= n and |M|=m, we refer to
the agents by ai and to the items by bi. We denote the valuation of agent ai for a set S of items
by Vi(S).

Let Πr be the set of all partitionings of M into r disjoint subsets. For every P ∗ ∈Πr, we denote
the partitions by P ∗1 , P

∗
2 , . . . , P

∗
r . For an agent ai, define MMSr

i (M) as

MMSr
i (M) = max

P∗∈Πr

min
1≤j≤r

f(P ∗j ).

For brevity we refer to MMSn
i (M) by MMSi.

An allocation of items to the agents is a vector A = 〈A1,A2, . . . ,An〉 where
⋃
Ai =M and

Ai ∩Aj = ∅ for every two agents ai 6= aj. An allocation A is α-MMS, if every agent ai receives a
subset of the items whose value to that agent is at least α times MMSi. More precisely, A is α-MMS
if and only if Vi(Ai)≥ αMMSi for every agent.

In the rest of this paper, we assume MMSi = 1 for every agent ai. This is without loss
of generality for the existential proof since one can scale the valuation functions to impose this
constraint.

2.1. Reducibility. We say an instance of the problem is α-reducible, if there exist a set T ⊂N
of agents, a set S of items, and an allocation A= 〈A1,A2, . . . ,An〉 of S to agents of T such that

∀ai ∈ T Vi(Ai)≥ αMMSi

and

∀ai /∈ T MMSn−|T |
i (M\S)≥MMSi.

We also call an instance α-irreducible if it is not α-reducible.

Observation 1. Every instance of the fair allocation problem admits an α-MMS allocation, if
this holds for all α-irreducible instances.

The reducibility argument plays an important role in both the existential proof and the algorithm
that we present in the paper. Perhaps the most important consequence of irreducibility is a bound
on the valuation of the agents for every item.

Lemma 1. In every α-irreducible instance, for every ai and bj we have Vi(bj)<α.

For example, Lemma 1 states that if the problem is 3/4-irreducible, then no agent has a value of
3/4 or more for an item. As a natural generalization of Lemma 1, we show a similar observation for
every pair of items. However, this involves an additional constraint on the valuation of the other
agents for the pertinent items.

Lemma 2. If the problem is α-irreducible and Vi({bj, bk})≥ α holds for an agent ai and items
bj, bk, then there exists an agent ai′ 6= ai such that Vi′({bj, bk})> 1.
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Ẏ

Ẍ = M(Ÿ)

Ỹ = Y \ (Ẏ ∪ Ÿ) Ÿ

X̃ = M(Ỹ)

Maximum Matching

Vertices reachable from Ẏ via an alternating path Unsaturated vertices

X̊

Y̊

Ẋ

Figure 2. Some notations on the value graph

According to Lemma 2, in every α-irreducible instance, for every agent ai and items bj, bk, either
Vi({bj, bk})< α or there exists another agent ai′ 6= ai, such that Vi′({bj, bk})> 1. More generally,
let S = {bj1 , bj2 , . . . , bj|S|} be a set of items inM and T = {ai1 , ai2 , . . . , ai|T |} be a set of agents such
that

• (i) |S|= 2|T |.
• (ii) For every aia ∈ T we have Via({bj2a−1

, bj2a})≥ α.
• (iii) For every ai /∈ T we have Vi({bj2a−1

, bj2a})≤ 1 for every 1≤ a≤ |T |.

then the problem is α-reducible.

Lemma 3. In every α-irreducible instance of the problem, for every set T = {ai1 , ai2 , . . . , ai|T |}
of agents and set S = {bj1 , bj2 , . . . , bj|S|} of items at least one of the above conditions is violated.

2.2. Value graph. For a set M of items and N of agents, we define the value graph G =
〈X ∪̇Y,E〉 as follows: Y corresponds to the agents in N and X corresponds to the items inM. More
precisely, for every agent ai we have a vertex yi ∈Y and every item bjwe have a vertex xj ∈X . For
every pair of vertices yi and xj, there exists an edge (xj, yi) in E with weight w(xj, yi) = Vi({bj}),
if and only if Vi({bj})≥ 1/2. Note that some of the vertices in X or Y may be isolated. An isolated
vertex in X corresponds to an item that has a value less than 1/2 to all the agents. Similarly,
isolated vertices in Y correspond to the agents that value every item inM less than 1/2. We denote
by Y̊ and X̊ , the set of isolated vertices in X and Y respectively.

In our algorithm we subsequently make use of classic bipartite graph algorithms on the value
graph. Let M be a maximum matching (i.e., matching with the highest number of edges) of G.
Define Ẏ and Ẋ as the set of the vertices respectively in Y and X that are not saturated by
M . Furthermore, define Ÿ as the set of saturated vertices in Y that are connected to Ẏ by an
alternating path and let Ẍ =M(Ÿ), where M(Ÿ) is the set of vertices in X that are matched with
the vertices of Ÿ in M . Finally, define Ỹ as the set of vertices in Y \ Ẏ ∪ Ÿ and let X̃ =M(Ỹ). By
the definition of augmenting path, we know that the following properties are trivially hold:

• (Property 1). Since vertices of X̊ ∪ Y̊ are isolated , we have X̊ ⊆ Ẋ , and Y̊ ⊆ Ẏ.
• (Property 2). Since M is maximum, the graph has no augmenting path. Therefore, there

is no edge between Ẋ and Ẏ ∪ Ÿ. Furthermore, since there is no alternating path from Ẏ ∪ Ÿ
to Ỹ, there is no edge between X̃ and Ẏ ∪ Ÿ. Therefore, there is no edge between Ẋ ∪ X̃ and
Ẏ ∪ Ÿ.

Furthermore, In Lemmas 4, we prove a useful property of bipartite graphs.

Lemma 4. For every set S ⊆ Ẍ we have |N(S)|> |S|, where N(S) is the set of the neighbors
of S.
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2.3. Envy-cycle freeness. In the algorithm, we satisfy each agent in two steps. More pre-

cisely, we allocate each agent two sets of items that are together of worth at least 3/4 to him. We

denote the first set of items allocated to agent ai by fi and the second set by gi. Moreover, we

attribute the agents with labels satisfied, unsatisfied, and semi-satisfied in the following way:

• An agent ai is satisfied if Vi(fi ∪ gi)≥ 3/4.

• An agent ai is semi-satisfied if fi 6= ∅ but gi = ∅. In this case we define εi = 3/4−Vi(fi).

• An agent ai is unsatisfied if fi = gi = ∅.

As we see, the algorithm maintains the property that for every semi-satisfied agent ai, Vi(fi) ≥
1/2.A semi-satisfied agent ai envies another semi-satisfied agent aj, if she prefers to switch her set

of items with aj, i.e., Vi(fj)≥ Vi(fi). For a set T of semi-satisfied agents, define the envy-graph of

T as a digraph, such that for any agent ai ∈ T , there is a vertex vi and there is a directed edge

from vi to vj, if ai envies aj. A set T of agents is envy-cycle-free, if its corresponding envy-graph

is a DAG. We define an ordering on a set T of envy-cycle-free semi-satisfied agents based on their

position in the topological ordering of the envy-graph corresponding to the agents in T .

Definition 1. Let T be a set of envy-cycle-free semi-satisfied agents. For two agents ai, aj ∈ T ,

we say ai ≺O aj, if and only if vi appears before vj, in the topological ordering of the envy-graph

of T .

In a case that the topological ordering of the envy graph is not unique, one can select any of

them; the only property we use is that in the topological ordering of a envy-cycle-free set T of

semi-satisfied agents, if ai ∈ T envies aj ∈ T , then ai ≺O aj.

Observation 2. Let ai, aj be two agents such that aj ≺O ai. We have: Vi(fj)≤ 3/4− εi.

We define a maximum cardinality maximum weighted matching (MCMWM) of a weighted graph

as a matching that has the highest number of edges and among them the one that has the highest

total sum of edge weights. In Lemma 5, we show that an MCMWM has certain properties that makes

it useful for building envy-cycle-free clusters.

Lemma 5. Let G〈X ∪̇Y,E〉 be a value graph with and let M = {(x1, y1), ..., (xk, yk)} be an

MCMWM of G. Then, for every subset T ⊆ {y1, y2, . . . , yk}, the following conditions hold:

• There is a vertex yj ∈ T such that w(xj, yj)≥w(xi, yj), for all xi ∈M(T ) and (xi, yj)∈E.

• There is a vertex yj ∈ T such that w(xi, yi)≥w(xj, yi), for all yi ∈ T and (xj, yi)∈E.

• For any vertex yi ∈ T and any unsaturated vertex xj ∈X , w(xi, yi)≥w(xj, yi).

where M(T ) is the set of vertices which are matched by the vertices of T in M .

Notice that the first and the second condition of Lemma 5 implies that if we allocate a subset

of items to a subset S of agents via a MCMWM of the value graph the corresponding envy-graph is

a DAG, and hence, the resulting allocation is envy-cycle-free.

3. 3/4-MMS Allocation Algorithm for Additive Agents. In this section we present a

proof to the existence of a 3/4-MMS allocation. As we see, our proof is constructive. This married

with the PTAS algorithm of Epstein and Levin [11] for finding the MMS values, results is an

algorithm that finds a (3/4− ε)-MMS allocation in polynomial time.

The organization of this section is summarized in the following: we start by a brief and abstract

explanation of the ideas in Section 3.1. Next, in Section 3.2 we discuss a method for clustering

the agents and in Section 3.3 we show how we allocate the rest of the items to the agents of each

cluster to ensure a 3/4-MMS guarantee.
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3.1. A Brief Overview of the Algorithm The purpose of this section is to provide some
insight with an abstract overview of the ideas in our algorithm. For simplicity, we start with a simple
1/2-MMS algorithm mentioned in Section 1.1. Recall that the bag-filling procedure guarantees a
1− α approximation solution when the valuations of the agents for each item is smaller than α.
Furthermore, we know that in every α-irreducible instance, all the agents have a value less than α
for each item. Thus, the following simple procedure yields a 1/2-MMS allocation:

• Reduce the problem until no agent has a value more than 1/2 for any item.
• Allocate the items to the agents via a bag-filling procedure.

bag fillingReduce

Figure 3. 1/2-MMS Algorithm

We can extend the idea in 1/2-MMS algorithm to obtain a more efficient algorithm. Here is
the sketch of the 2/3-MMS algorithm: consider a 2/3-irreducible instance of the problem. In this
instance, we have no item with a value more than or equal to 2/3 to any agent. Nevertheless, the
items are not yet small enough to run a bag-filling procedure. The idea here is to divide the agents
into two clusters C1 and C2. Our main tool for constructing the clusters is a MCMWM of the value
graph. Consider the value graph G, albeit with threshold 1/3 instead of 1/2 for the edges, and let
M be a MCMWM of G. Cluster C1 is defined to be the agents corresponding to the vertices of Ỹ,
and the rest of the agents belong to C2. Furthermore, each agent in C1 receives one item, that is,
the item corresponding to her matched vertex in M . By definition, this item is worth at least 1/3
to him, and has a value less than 1/3 to the agents in C2.

In the next step, we refine Cluster C1. In the refining procedure, while there exists an agent in C1

that could be satisfied with a single remaining item in Ẋ , we do so. After refining C1, the remaining
items in Ẋ preserve the following two invariants:

• Value of every remaining item in Ẋ is less than 1/3 to every remaining agent.
• No agent in C1 can be satisfied with a single item of Ẋ (regarding the item that is already

allocated to him).

These two invariants enable us to run a bag-filling procedure over the remaining items. For
this case, the bag-filling procedure must be more intelligent: in the case that multiple agents are
qualified to receive the items of the bag, we prioritize the agents. Roughly speaking, the priorities
are determined by two factors: the cluster they belong to, and the envy-cycle-freeness of the agents
in C1. In Figure 4 you can see a flowchart for this algorithm.

bag fillingReduce Building

C1 and C2

Refining

C1

Figure 4. 2/3-MMS Algorithm
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Our method for a 3/4-MMS allocation takes one step further from the previous 2/3-MMS algo-
rithm. Again, we assume that the input is 3/4-Irreducible. Via similar ideas, we build Cluster C1

and refine it. Next, we build Clusters C2 and C3 and refine C2. After refining Cluster C2, the following
invariants are preserved for the remaining items:

• Almost every remaining item has a value less than 1/4 to every remaining agent. More
precisely, for every remaining agent ai, there is at most one remaining item bj with Vi({bj})≥
1/4.

• No remaining item can singly satisfy an agent in C1 and C2 (regarding the item that is already
allocated to them).

Finally, we run a bag-filling procedure. Again, in the bag-filling procedure, the priorities of the
agents are determined by the cluster they belong to, and the envy-cycle-freeness of the clusters. In
Figure 5 you can see the flowchart of the algorithm.

Refining

C1

Building

C1
Building

C2 and C3

Refining

C2

bag fillingReduce

Figure 5. 3/4-MMS Algorithm

Our assumption is that the input is 3/4-irreducible. Hence, we describe our algorithm in two
phases: a clustering phase and the bag-filling phase, as shown in Figure 6.

Phase1: Clustering Phase2: bag filling

Refining

C1

Building

C1
Building

C2 and C3

Refining

C2

bag fillingReduce

Figure 6. Algorithm Phases

3.2. Phase 1: Building the Clusters We now explain our method for clustering the agents.
Intuitively, we divide the agents into three clusters C1,C2 and C3. As mentioned before, during the
algorithm, two sets fi (first set) and gi (second set) of items are allocated to each agent ai. Except
the agents in C3, all the agents receive their first set during the clustering phase via a MCMWM of
the value graph. Furthermore, all the second sets are either allocated during the refinement steps,
or bag-filling phase. The basic idea is to carefully allocate the first sets and the second sets, so
that the entire set of items allocated to one agent would not be too valuable for the rest of the
agents. Accordingly, some of the lemmas and observations are labeled as value. In these lemmas
and observations we bound the value of fi and gi allocated to an agent ai for the rest of the agents.
A summary of these lemmas is shown in Tables 1, 2 and 3.
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Ỹ

G〈V,E〉

MCMWM

Ẍ

Ÿ Ẏ

X̃

X̊

Ẋ

Figure 7. Construction of Cluster C1.

After constructing each cluster, we refine it. In the refinement step of each cluster, we check
whether the agents of that cluster can be satisfied via a single remaining item whose vertex belongs
to Ẋ . The goal of the refinement step is to ensure that the remaining items are small enough for
the agents in that cluster, i.e., none of the remaining items can satisfy an agent in the cluster.

We denote by S, the set of satisfied agents. In addition, denote by S1,S2, and S3 the subsets
of S, where Si refers to the agents of S that previously belonged to Ci. Furthermore, we use Sr

1

and Sr
2 to refer to the agents of S1 and S2 that are satisfied in the refinement steps of C1 and C2,

respectively.

3.2.1. Cluster C1 Let G〈X ∪̇Y,E〉 be the value-graph corresponding to the items in M and
agents in N , and let M be an MCMWM of G. We define Cluster C1 as the set of agents whose
corresponding vertex is in Ỹ. For each agent ai ∈ C1, let xj =M(yi) be the vertex in X̃ which is
matched to yi in M . We allocate bj to ai, i.e., we set fi = {bj}. Since w(xj, yi) ≥ 1/2, for every
agent ak ∈ C1 we have Vk(fk)≥ 1/2, and therefore, εk ≤ 1/4. In addition, for every agent which is
not in C1, the condition of Observation 3 holds. Note that all the agents that are not in C1, belong
to either C2 or C3.

Observation 3 (value). By Property 1, for every agent ai ∈ C2 ∪ C3 and every agent aj ∈ C1

we have Vi(fj)< 1/2.

3.2.2. Refinement of Cluster C1. Let U be a subset of Ẋ , containing the vertices in Ẋ that
their corresponding item can satisfy at least one agent in C1 (regarding the item that is allocated
to him in the clustering). Before building Cluster C2, we check whether we can satisfy each one of
the agents in C1 with an item whose vertex is in U . To this aim, we define another temporary graph
G1 on the vertices of U and Ỹ. In G1, There is an edge between yi ∈ Ỹ and xj ∈U , if Vi({bj})≥ εi,
that is, allocating item bj to ai makes him satisfied. We show that G1 admits a special type of
matching, described in Lemma 6. The reason that Lemma 6 holds is our assumption that the input
instance is irreducible.

Lemma 6. For all R ⊆ U we have |N(R)| > |R|. In addition, there exists a matching M1 in
G1, that saturates all the vertices of U , and for any edge (xi, yj)∈M1 and any unsaturated vertex
yk ∈N(xi), ak does not envy aj.

Let M1 be a matching of G1 with the properties described in Lemma 6. For every edge (yi, xj)∈
M1, we allocate item bj to agent ai i.e., we set gi = {bj}. By the definition, ai is now satisfied.
Thus, we remove ai from C1 and add it to S. At this point, all the agents of S belong to Sr

1 (agents
satisfied in the refinement of C1). Each one of these agents is satisfied with two items, i.e., for any
agent aj ∈ Sr

1 , |fj|= |gj|= 1. In Lemma 4 we give an upper bound on Vi(gj) for every agent aj ∈ Sr
1

and every agent ai in C2 ∪C3.
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Observation 4 (value). Since U ⊆ Ẋ , by Property 2, for every agent ai ∈ C2 ∪C3, and every
agent aj ∈ Sr

1 we have Vi(gj)< 1/2.

Observations 3 and 4 state that for every agent ai ∈ C2 ∪C3 and every agent aj ∈ Sr
1 , Vi(fj) and

Vi(gj) are upper bounded by 1/2. This, together with the fact that |fj|= |gj|= 1, results in Lemma
7.

Lemma 7. For all ai /∈ C1, we have

MMS
|N\Sr1 |
Vi

(M\
⋃

yj∈Sr1

fj ∪ gj)≥ 1.

Now, consider the subgraph G′ of G, representing the value graph of the remaining items and
the agents that are not in C1. More formally, let G′〈X ′∪̇Y ′,E′〉 be an induced subgraph of G, where

Y ′ =Y \ Ỹ, X ′ =X \ (U ∪ X̃ ).

We use G′ to build the second cluster.

3.2.3. Cluster C2 Before describing the details for building the second cluster, let us first
overview the structure of graph G′. Since all the vertices in Ỹ are added to C1, sets Ỹ ′ and X̃ ′ are
empty. Furthermore, as a result of the refinement step, all the vertices in Ẋ ′ are isolated, which
means their corresponding items have a low value (i.e., less than 1/2) for all the remaining agents.
This, along with Lemma 4 concludes that the size of the maximum matching between X ′ and Y ′ is
|Ẍ ′|. In what follows, we increase the size of the maximum matching in G′ by merging the vertices
of Ẋ ′ as described in Definition 2.
Definition 2. For merging vertices xi, xj, we create a new vertex labeled with xi,j. Next, we

add xi,j to X ′ and for every vertex yk ∈Y ′, we add an edge from yk to xi,j with weight Vk({xi, xj}),
if and only if Vk({xi, xj}) ≥ 1/2. Finally we remove vertices xi and xj and their corresponding
edges.

In Observation 5 and Lemma 8, we guarantee that the total value of the items corresponding to
a merged vertex is not too much for the remaining agents. The reason that Observation 5 holds,
is that none of the items corresponding to the vertices of Ẋ ′ are allocated in the refinement of C1,
which means none of them can make an agent in C1 satisfied. Furthermore, in Lemma 8, we prove
that the value of the items corresponding to a merged vertex is less than 3/4 to any agent. Lemma
8 is a direct consequence of 3/4-irreducibility. In fact, we show that if the condition of Lemma 8
does not hold, then the problem can be reduced.

Observation 5. For any agent ai ∈ C1 and any vertex xj,∈ Ẋ ′ we have Vi({bj})< εi. There-
fore, total value of the items that belong to a merged vertex is less than 2εi for ai.

Lemma 8. For any agent ak ∈N and any pair of vertices xi, xj ∈ Ẋ ′, Vk({bi, bj})< 3/4 holds.

Corollary 1 (of Lemma 8). For any agent ai ∈N , there is at most one item bj, with xj ∈
Ẋ ′ such that Vi({bj})≥ 3/8.

We call a pair (xi, xj) of isolated vertices in Ẋ ′ desirable for yk ∈Y ′, if Vk({xi, xj})≥ 1/2. With
this in mind, consider the process described in Algorithm 1. In each step of this process, we find
a MCMWM M ′ of G′. Note that M ′ changes after each step of the algorithm. Next, we find a pair
(xi, xj) of the vertices in Ẋ ′ that is desirable for at least one agent in Ẏ ′∪Ÿ ′. If no such pair exists,
we terminate the process. Otherwise, we select an arbitrary desirable pair (xi, xj) and merge them
to obtain a vertex xi,j. According to the definition of Ẏ ′ and Ÿ ′, merging a pair (xi, xj) results in
an augmenting path in G′. Hence, the size of the maximum matching in G′ is increased by one.
Note that after the termination of Algorithm 1, either Ẏ ′ ∪ Ÿ ′ = ∅ or no pair of vertices in Ẋ ′ is
desirable for any vertex in Ẏ ′ ∪ Ÿ ′.
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Figure 8. Construction of Cluster C2

Algorithm 1: Merging vertices in G′

Data: G′(X ′∪̇Y ′,E)
1while True do
2 M ′ = MCMWM of G′;

3 Q= Set of all desirable pairs in Ẋ ′ for the agents in Ẏ ′ ∪ Ÿ ′;
4 if Q= ∅ then
5 STOP;
6 else
7 Select an arbitrary pair xi, xj from Q;
8 Merge(xi, xj);

After running Algorihtm 1, we define Cluster C2 as the set of the agents that correspond to the
vertices of Ỹ ′. For each agent ai ∈ C2, we allocate the item corresponding to M ′(yi) (or pair of
items in case M ′(yi) is a merged vertex) to ai. Also, we put the rest of the agents in Cluster C3.
Therefore, Lemma 6 holds for all the agents of C3.

Observation 6 (value). By Property 2, for every agents ai ∈ C3 and aj ∈ C2 we have Vi(fj)<
1/2.

3.2.4. Cluster C2 Refinement The refinement step of C2, is semantically similar to the
refinement of C1; we satisfy some of the agents of C2 by the items with vertices in Ẋ ′ (note that
none of the vertices in Ẋ ′ is a merged vertex). The refinement of C2 is shown in Algorithm 2. Let
ai1 , ai2 , . . . , aik be the topological ordering of the agents in C2 with respect to their envy-graph. In
Algorithm 2, we start with yi1 and U ′ = ∅ and check whether there exists a vertex xj ∈ Ẋ ′ \U such
that Vi1({bj})≥ εi1 . If so, we add xj to U ′ and satisfy ai1 by allocating bj to ai1 . Next, we repeat
the same process for yi2 and continue on to yik . Note that at the end of the process, U ′ refers to
the vertices whose corresponding items are allocated to the agents during the refinement of C2. Let
G′′〈X ′′∪̇Y ′′,E′′〉 be an induced subgraph of G′ with

Y ′′ =Y ′ \ Ỹ ′ X ′′ =X ′ \ (U ′ ∪ X̃ ′).
We use G′′ to build Cluster C3.

Observation 7. After the refinement of C2, for every xj ∈ Ẋ ′′ and ai ∈ C2, we have Vi({bj})<
εi.
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Algorithm 2: Refinement of C2

Data: G′(X ′∪̇Y ′,E′)
Data: ai1 , ai2 , . . . , aik = Topological ordering of agents in C2

1for l : 1→ k do

2 if ∃xj ∈ Ẋ ′ \U ′ s.t. Vi1({bj})≥ εil then
3 gil = bj ;
4 U ′ =U ′ ∪xj;
5 C2 = C2 \ ail ;
6 S = S ∪ ail ;

In the following two observations, we give upper bounds on the value of gi for every agent
ai ∈ Sr

2 . First, in Observation 8, we show that for every agent aj ∈ C1, Vj(gi) is upper bounded by
εj. Furthermore, by the fact that the agents that are not selected for Clusters C1 and C2 belong to
Cluster C3, we show that Vj(gi) is upper bounded by 1/2 for every agent aj ∈ C3.

Observation 8 (value). Let ai ∈ Sr
2 be an agent that is satisfied in the refinement of C2 and

aj be an agent in C1. Then, by Observation 5, Vj(gi)< εj holds.

Observation 9 (value). Let ai ∈ Sr
2 be an agent that is satisfied in the refinement of C2 and

aj be an agent in C3. Then, by Property 2, we have Vj(gi)< 1/2.

3.2.5. Cluster C3. Finally, Cluster C3 is defined as the set of the agents corresponding to the
vertices of Y ′′. Let M ′′ be an MCMWM of G′′. Note that we have X̃ ′′ = ∅, and by Lemma 4, all the
vertices in X ′′ \ Ẋ ′′ are saturated by M ′′. For each vertex yi that is saturated by M ′′, we allocate
the item (or pair of items in a case that M ′′(yi) is a merged vertex) corresponding to M ′′(yi) to
ai. Unlike the previous clusters, this allocation is temporary. A semi-satisfied agent ai in C3 may
lend her item in fi to another agent of C3. Therefore, we have three type of agents in C3:

• Semi-satisfied agents: Agents in C3 that became semi-satisfied by matching M ′′. We denote
the set of semi-satisfied agents by Cs3 . Currently, all the agents in Ẍ ′′ belong to Cs3 .

• Borrower agents: An agent aj in C3 is borrower, if aj /∈ Cs3 and

max
ai∈CS3

Vj(fi)≥ 1/2.

We denote the set of borrower agents by Cb3. Currently, the agents in Ẏ ′′ \ Y̊ ′′ belong to Cb3.
• Free agents: All the remaining agents in C3.We denote the set of free agents by Cf3 . Currently,

all the agents with vertices n Y̊ ′′ belong to Cf3 .

As we see, during the second phase, agents in C3 may change their type. For example, an agent
in Cs3 may move to Cf3 or vice versa. For convenience, for every agent ai ∈ Cb3, we define εi as

3/4− max
aj∈Cs3

Vi(fj).

Note that by the definition, εi ≤ 1/4 holds for every agent of Cb3.
We call the items corresponding to the vertices of Ẋ ′′ free and denote the set of free items by

F . Observation 10 states that free items are not valuable for the agents in C3. The reason that
Observation 10 holds is the fact that no pair of vertices is desirable for any agents in C3 at the end
of Algorithm 1.

Observation 10. Since at the end of Algorithm 1, no pair of vertices was desirable, for all
ai ∈ C3 and xj, xk ∈ Ẋ ′′, we have Vi({bj, bk})< 1/2.
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Figure 9. Overview on the state of the algorithm after the clustering phase

∀ai ∈ C1 ∀ai ∈ C2 ∀ai ∈ C3

∀aj ∈ C1 - Vi(fj)< 1/2 (?) Vi(fj)< 1/2 (?)
∀aj ∈ C2 Vi(fj)< 3/4 (‡) - Vi(fj)< 1/2 (†)
∀aj ∈ Cs3 Vi(fj)< 3/4(‡) Vi(fj)< 3/4(‡) -

?: Observation 3 †: Observation 6 ‡: Observation 11

Table 1. Summary of value lemmas for fi

Corollary 2 (of Observation 10). For any agent ai ∈ C3, there is at most one vertex xj ∈
Ẋ ′′, such that Vi({bj})≥ 1/4.

3.3. Phase 2: Satisfying the Agents Before going through the second phase, we present an
overview of the current state of the agents and items. In Figure 9, for every agent ai ∈ C1 ∪C2 ∪S,
fi is shown by a gray rectangle and for every agent ai ∈ S, gi is shown by a hatched rectangle.

Currently, we know that every agent in S belongs to either Sr
1 or Sr

2 . These agents are satisfied
in the refinement steps of C1 and C2. The rest of the agents will be satisfied in the second phase.
For brevity, for i≤ 2 we use Ss

i to refer to the agents in Si that are satisfied in the second phase.
More formally, for i= 1,2 define Ss

i = Si \ Sr
i .

Since we didn’t refine Cluster C3, all the agents in the Cluster C3 are satisfied in the second
phase. As mentioned in the previous section, the allocation to the semi-satisfied agents in C3 is
temporary; That is, we may alter such allocations later. Therefore, in Figure 9 we illustrate such
allocations by dashed lines.

By Observations 5, 7 and Corollary 2, we know that the items in F have the following properties:

• For every ai in C1, Vi({bj})< εi holds for all bj ∈F (Observation 5).
• For every ai in C2, Vi({bj})< εi holds for all bj ∈F (Observation 7).
• For every ai in C3, there is at most one item bj ∈F , such that Vi({bj})≥ 1/4 (Corollary 2).

In summary, items of F are small enough, therefore we can run a process similar to the bag-filling
algorithm described earlier to allocate them to the agents. Recall that our clustering and refinement
methods preserve the conditions stated in Observations 3, 4, 6, 8 and 9. We complement these
results by Observation 11.
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∀ai ∈ C1 ∀ai ∈ C2 ∀ai ∈ C3

∀aj ∈ Sr
1 - Vi(gj)< 1/2 (?) Vi(gj)< 1/2 (?)

∀aj ∈ Sr
2 Vi(gj)< εi(†) - Vi(gj)< 1/2 (‡)

?: Observation 4 †: Observation 8 ‡: Observation 9

Table 2. A summary of the value observations for the agents in Sr
i

Observation 11 (value). For every agent ai ∈ C1 ∪C2 ∪Cs3, we have

∀aj ∈ C1 ∪C2 ∪C3 Vj(fi)< 3/4.

The reason that Observation 11 holds is that, at this point, for every agent ai ∈ C1 ∪ C2 ∪ Cs3 ,
|fj| ≤ 2. If |fi|= 1, according to Lemma 1 value of the item in fi is less than 3/4 to all other agents.
Moreover, if |fi| = 2, then fi corresponds to a merged vertex. In this case, by Lemmas 5 and 8,
value of fi is less than 3/4 to all other agents.

A brief summary of Observations 3, 4, 6, 8, 9 and 11 is illustrated in Tables 1 and 2. Finally,
since sets C1,C2 and Cs3 are envy-cycle-free, Observation 2 holds for these sets.

3.3.1. Second Phase: bag-filling. We begin this section by defining feasible subsets of items.
A subset S of items in F is feasible, if either there exists an agent ai ∈ Cf3 such that Vi({S})≥ 1/2,
or there exists an agent ai ∈ C1 ∪C2 ∪Cs3 ∪Cb3 such that Vi({S})≥ εi. For a feasible set S, we define
Φ(S) as the set of agents, that set S is feasible for them.

Recall the notion of envy-cycle-freeness and the topological ordering of the agents in a envy-
cycle-free set of semi-satisfied agents. Based on this, we define a total order ≺pr to prioritize the
agents in the bag-filling algorithm.
Definition 3. Define a total order ≺pr on the agents of C1 ∪C2 ∪C3 with the following rules.

• ai5 ≺pr ai1 ≺pr ai2 ≺pr ai3 ≺pr ai4 ∀ai1 ∈ C1, ai2 ∈ C2, ai3 ∈ Cs3 , ai4 ∈ Cb3, ai5 ∈ C
f
3

• ai ≺pr aj⇔ ai ≺o aj ∀ai, aj ∈ C1 ∪C2 ∪Cs3 , ai, aj in the same cluster
• ai ≺pr aj⇔ i < j ∀ai, aj ∈ Cb3 ∨ ai, aj ∈ C

f
3

Recall that ≺o refers to the topological ordering of a semi-satisfied set of agents. Roughly
speaking, for the semi-satisfied agents in the same cluster, ≺pr behaves in the same way as ≺o.
Furthermore, for the agents in different clusters, we have

Cf3 ≺pr C1 ≺pr C2 ≺pr Cs3 ≺pr Cb3.

Finally, the order of the agents in Cb3 and Cf3 is determined by their index.
The second phase consists of several rounds and every round has two steps. Each of these two

steps is described below. We continue running this algorithm until F is no longer feasible for any
agent.

• Step1: Find a feasible subset S ⊆F , such that |S| is minimal.
• Step2: Select the smallest element of Φ(S) with respect to ≺pr. Let ai be the selected agent.

If ai ∈ Cf3 , we (temporarily) allocate S to ai. Otherwise, if ai ∈ Cb3, let aj be the agent that
Vi(fj) = 3/4− εj. we take back fj from aj and allocate fj ∪S to ai. Finally, if ai ∈ C1∪C2∪Cs3 ,
we satisfy agent ai by allocating S to him.

Note that, by the construction of Cs3 ,Cb3, and Cf3 , the process in the second step may force agents
in C3 to move in between Cs3 ,Cb3 and Cf3 . For example, if the first case happens, then ai is moved
from Cf3 to Cs3 . In addition, all other agents in Cf3 for which S is feasible are moved to Cb3. For the
second case, aj is moved to one of Cf3 or Cb3, based on Vj(fk) for every ak ∈ Cs3 ; that is, if there exists
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Algorithm 3: The Second Phase

Data: F ,C1,C2,C3

1while F is feasible do
2 S = a minimal feasible subset of F ;
3 ai = the smallest agent in Φ(S) regarding ≺pr;

4 if ai ∈Cf
3 then

5 fi = S ;
6 Update(C3) ;
7 if ai ∈ Cb3 then
8 Let aj be the agent that Vi(fj) = 3/4− εi ;
9 fi = fj ;

10 gi = S ;
11 S = S ∪ ai ;
12 fj = ∅;
13 C3 = C3 \ ai ;
14 Update(C3) ;
15 if ai ∈ Cs3 then
16 gi = S;
17 S = S ∪ ai;
18 C3 = C3 \ ai ;
19 Update(C3) ;
20 if ai ∈ C1 ∪C2 then
21 gi = S;
22 Remove ai from its corresponding cluster ;
23 S = S ∪ ai;

an agent ak ∈ Cs3 such that Vj(fk)≥ 1/2, aj is moved to Cb3. Otherwise, aj is moved to Cf3 . For both
the second and the third cases, some of the agents in Cb3 may move to Cf3 .

The second phase terminates, when F is no longer feasible for any agent. More details about the
second phase can be found in Algorithm 3. In Algorithm 3, we use Update(C3) to refer the process
of moving agents among Cs3 ,Cb3 and Cf3 .

In each round of the second phase, either an agent is satisfied or an agent in Cf3 becomes semi-
satisfied. In Lemma 9, we show that if an agent ai ∈ Cf3 is selected in some round of the second
phase, then Vj(fi) is upper bounded by 2εj for every agent aj ∈ C3 ∪C2 ∪Cs1 ∪Cb1. As a consequence
of Lemma 9, in Lemma 10 we show that sets C1,C2 and C3 remain envy-cycle-free during the second
phase. For convenience, we use Rz to refer to the z’th round of the second phase.

Lemma 9. Let Rz be a round of the second phase that an agent ai ∈ Cf3 is selected. Then, for
every agent aj ∈ C3 ∪C2 ∪Cs1 ∪Cb1, we have Vj(fi)< 2εj < 3/4.

Lemma 10. During the second phase, the C1,C2 and Cs3 maintain the property of envy-cycle-
freeness.

Finally, for the rounds that an agent ai is satisfied, Lemmas 11 and 12 provides us upper bounds
on the value of gi for remaining agents in different clusters.

Lemma 11 (value). Let ai ∈ S be an agent that is satisfied in the second phase. Then, for
every other agent aj ∈ C1∪C2, if aj ≺pr ai we have Vj(gi)< εj, and if ai ≺pr aj we have Vj(gi)< 2εj.

Lemma 12 (value). Let ai be an agent in Ss
1 ∪ Ss

2 . Then, for every agent aj ∈ C3, we have
Vj(gi)< 1/2.
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∀ai ∈ C1 ∀ai ∈ C2 ∀ai ∈ C3

∀aj ∈ Ss
1 - Vi(gj)< 2εi(?) Vi(gj)< 1/2(†)

∀aj ∈ Ss
2 Vi(gj)< εi(?) - Vi(gj)< 1/2(†)

∀aj ∈ S3 Vi(gj)< εi(?) Vi(gj)< εi(?) -

? : Lemma 11 †: Lemma 12

Table 3. A summary of value lemmas for gi

The results of Lemmas 11 and 12 are summarized in Table 3.

3.4. The Algorithm Finds a 3/4-MMS Allocation In the rest of this section, we prove
that the algorithm finds a 3/4-MMS allocation. For the sake of contradiction, suppose that the
second phase is terminated, which means F is not feasible anymore, but not all agents are satisfied.
Such an unsatisfied agent belongs to one of the Clusters C1 or C2, or C3. In Lemmas 13, 14, and 15,
we separately rule out each of these possibilities. This implies that all the agents are satisfied and
contradicts the assumption. For brevity the proofs are omitted and included in the Appendix. We
begin with Cluster C3.

Lemma 13. At the end of the algorithm we have C3 = ∅.

To prove Lemma 13 we consider two cases separately. If C3 6= ∅, either there exists an agent ai ∈
Cs3 ∪Cb3 or all the agents of C3 are in Cf3 . If the former holds, we show Cs3 is non-empty and assume
ai is a winner of Cs3 . We bound the total value of ai for all the items dedicated to other agents and
show the value of the remaining items in F is at least εi for ai. This shows set F is feasible for
ai and contradicts the termination of the algorithm. In case all agents of C3 are in Cf3 , let ai be
an arbitrary agent of Cf3 . With a similar argument we show that the value of ai for the remaining
unassigned items is at least 3/4 and conclude that F is feasible for ai which again contradicts the
termination of the algorithm.

Next, we prove a similar statement for C1.

Lemma 14. At the end of the algorithm we have C1 = ∅.

Proof of Lemma 14 follows from a coloring argument. Let ai be a winner of C1. We color all items
in either blue or white. Roughly speaking, blue items are in a sense heavy, i.e., they may have a
high valuation to ai whereas white items are somewhat lighter and have a low valuation to ai.
Next, via a double counting argument, we show that ai’s value for the items of F is at least εi and
thus F is feasible for ai. This contradicts C1 = ∅ and shows at the end of the algorithm all agents
of C1 are satisfied.

Finally, we show that all the agents in Cluster C2 are satisfied by the algorithm.

Lemma 15. At the end of the algorithm we have C2 = ∅.

The proof of Lemma 15 is a similar to both proofs of Lemmas 13 and 14. Let ai be winner of
Cluster C2. We consider two cases separately. (i) εi ≥ 1/8 and (ii) εi < 1/8. In case εi ≥ 1/8, we use
a similar argument to the proof of Lemma 13 and show F is feasible for ai. If εi < 1/8 we again use
a coloring argument, but this time we color the items with 4 different colors. Again, via a double
counting argument we show F is feasible for ai and hence every agent of C2 is satisfied when the
algorithm terminates.

Theorem 1. All the agents are satisfied before the termination of the algorithm.

Proof. By Lemmas 13, 14, and 15, at the end of the algorithm all agents are satisfied which means
each has received a subset of items which is worth at least 3/4 to him. �
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3.5. Polytime Implementation In this section, we present a polynomial time algorithm to
find a (3/4−ε)-MMS allocation in the setting. More precisely, we show that our method for proving
the existence of a 3/4-MMS allocation can be used to find such an allocation in polynomial time.
Recall that our algorithm consists of two main phases: The clustering phase and the bag-filling
phase. We separately explain how to implement each phase of the algorithm in polynomial time.
Given this, there are still a few computational issues that need to be resolved. First, in the exis-
tential proof, we assume MMSi = 1 for every agent ai ∈N . Second, we assume that the problem is
3/4-irreducible. Both of these assumptions are without loss of generality for the existential proof
due to Observation 1 and the fact that one can scale the valuation functions to ensure MMSi = 1
for every agent ai. However, the computational aspect of the problem will be affected by these
assumptions. The first issue can be alleviated by incurring an additional 1+ ε factor to the approx-
imation guarantee. Epstein and Levin [11] show that MMSi can be approximated within a factor
1+ ε for constant ε in time poly(n). Thus, we can scale the valuation functions to ensure MMSi = 1
while losing a factor of at most 1 + ε. Therefore, finding a (3/4− ε)-MMS allocation can be done in
polynomial time if the problem is 3/4-irreducible. In the last part of this section, we show how to
reduce the 3/4-reducible instances and extend the algorithm to all instances of the problem. The
algorithm along with the reduction yields Theorem 2.

Theorem 2. For any ε > 0, there exists an algorithm that finds a (3/4− ε)-MMS allocation in
polynomial time.

The Clustering Phase Recall that in the clustering phase we cluster the agents into three
sets C1,C2, and C3. In order to build the Clusters we need to find an MCMWM of the 1/2-filtering of
the value graphs, which can be done in polynomial time [20]. We also need to find a matching of the
graph which satisfies the conditions of Lemma 6. We show in the following that this problem also
can be solved in polynomial time. Let pak be the position of ak in the topological ordering of C1, as
described in the proof of Lemma 6. Furthermore, Let M1 be a matching that minimizes expression∑

(xj ,yi)∈M1
pi. Recall that in the proof Lemma 6, we show that M1 satisfies the condition described

in Lemma 6. Here, we show that M1 can be found in polynomial time. To this end, we model this
with a network design problem.

Orient every edge (xj, yi)∈G1 from yi to xj and set the cost of this edge to pai . Also, add a source
node s and add a directed edge from s to every vertex of Ỹ with cost 0. Furthermore, add a sink
node t and add directed edges from the vertices of U to t with cost 0. Finally, set the capacity of
all edges to 1. One can observe that in a minimum cost maximum flow from s to t in this network,
the edges with non-zero flow between Ỹ and Ugt1 form a maximum matching M1. In addition to
this, since the cost of the flow is minimal,

∑
(xj ,yi)∈M1

cost(xj, yi) is minimized. Therefore, in this

matching,
∑

(xj ,yi)∈M1
pi is minimized. Thus, the matching with desired properties of Lemma 6 can

be found in polynomial time.
The same algorithms can be used to compute Cluster C2. Finally, we put the rest of the agents

in Cluster C3.

The bag-filling Phase. In each round of the second phase, we iteratively find a minimal
feasible subset of F and allocate its items to the agent with the lowest priority in Φ(S). Note that
for a feasible set S, one can trivially find the agent with lowest priority in Φ(S) in polynomial time.
Thus, it only remains to show that we can find a minimal feasible subset of F in polynomial time.

Consider the following algorithm, namely reverse bag-filling algorithm: start with a bag contain-
ing all the items of F and so long as there exists an item bj in the bag such that after removing
bj, the set of items in the bag is still feasible, remove bj from the bag. After this process, the
remaining items in the bag form a minimally feasible subset of F . Therefore, this phase can be run
in polynomial time.
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The Irreduciblity Assumption. The most challenging part of our algorithm is dealing with
the 3/4-irreducibility assumption. The catch is that, in order to run the algorithm, we don’t
necessarily need the 3/4-irreducibility assumption. Recall that we leverage the following three
consequences of irreducibility to prove the existential theorem.
• The value of every item in M is less that 3/4 to every agent.
• Every pair of items in X̃ ′ is in total worth less than 3/4 to any agent.
• The condition of Lemma 6 holds.

Therefore, the algorithm works so long as the mentioned conditions hold. Note that, although it
is not clear whether determining if an instance of the problem is 3/4-reducible is polynomially
tractable, all of the above conditions can be validated in polynomial time. This is trivial for the
first two conditions; we iterate over all items or pairs of items and check if the condition holds for
these items. The last condition, however, is harder to validate.

The condition of Lemma 6 holds if for all S ⊆ U , |N(S)| > |S|. In the proof of Lemma 6 we
showed that if this condition does not hold, then Ũ is non-empty. Next, we showed that if Ũ is
non-empty, then we can reduce the problem via satisfying every agents of Ũ by his matched item
in the maximum matching. Therefore, on the computational side, we only need to find whether Ũ
is empty which indeed can be determined in polynomial time.

Finally, note that every time we reduce the problem, |N | is decreased by at least 1, which implies
the number of times we reduce the problem is no more than n. Moreover, our reduction takes a
polynomial time. Thus, the running time of the algorithm is polynomial.
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